PakMediNet - Medical Information Gateway of Pakistan

Discussion Forum For Health Professionals

Post a Message

Lost your password?

Post Icon:

Note: Only Health Care Professionals (Doctors, Nurses, Pharmacists etc) and Members of this forum can add a message or reply to this message. Messages of the Non Health Care Professionals will be deleted without notification.

Topic Review - Newest First (only newest 5 are displayed)

aftabac

Frog Skin contain antibiotics, effective against MRSA

Frog Skin contain antibiotics, effective against MRSA

Antimicrobial peptides from the skin of frogs may protect against life-threatening, multidrug-resistant infections such as Pseudomonas aeruginosa say researchers from Italy. They detail their findings in
the September 2010 issue of the journal Antimicrobial Agents and Chemotherapy.
P. aeruginosa is an opportunistic pathogen that causes some of the most prevalent life-threatening infections such as eye and ear infections, burn wound infections and lung infections in cystic fibrosis patients. Strains of the bacterium resistant to almost all antibiotics have already emerged causing researchers to seek new drug therapies. Membrane-active cationic antimicrobial peptides (CAMPs) are a new class of antibiotics produced by almost all forms of life, however, amphibian skin is one of the richest sources. Although prior studies have shown that these peptides possess potent antimicrobial activity against multidrug-resistant pathogens in a controlled environment, little is known of their effects within a living organism.
Researchers evaluated the antimicrobial activities of different CAMPs from frog skin using the worm model, Caenorhabditis elegans, in which bacterial species such as P. aeruginosa can pass through the mouth, invade the gut and ultimately kill the animal. The process by which the bacterium infects and kills C. elegans is comparable to the infection process in mammals making it an ideal model for observation.
Results showed that all of the peptides studied, with the exception of one, increased the survival rate of P. aeruginosa-infected worms compared with those not receiving peptide treatments.
(D. Uccelletti, E. Zanni, L. Marcellini, C. Palleschi, D. Barra, M.L. Mangoni. 2010. Anti-Pseudomonas activity of frog skin antimicrobial peptides in a Caenorhabditis elegans infection model: a plausible mode
of action in vitro and in vivo. Antimicrobial Agents and Chemotherapy, 54. 9: 3853-3860.

Source: (American society of Microbiology)